1
0
mirror of https://github.com/duke-git/lancet.git synced 2026-02-04 12:52:28 +08:00
Files
lancet/slice/slice.go
donutloop 7b9a8a55e7 Slice: CountV2 (#18)
Use generic instead of reflection
2022-01-09 22:15:03 +08:00

703 lines
18 KiB
Go

// Copyright 2021 dudaodong@gmail.com. All rights reserved.
// Use of this source code is governed by MIT license
// Package slice implements some functions to manipulate slice.
package slice
import (
"errors"
"fmt"
"math"
"math/rand"
"reflect"
"sort"
"strings"
"unsafe"
)
// Contain check if the value is in the iterable type or not
func Contain(iterableType interface{}, value interface{}) bool {
v := reflect.ValueOf(iterableType)
switch kind := reflect.TypeOf(iterableType).Kind(); kind {
case reflect.Slice, reflect.Array:
for i := 0; i < v.Len(); i++ {
if v.Index(i).Interface() == value {
return true
}
}
case reflect.Map:
if v.MapIndex(reflect.ValueOf(value)).IsValid() {
return true
}
case reflect.String:
s := iterableType.(string)
ss, ok := value.(string)
if !ok {
panic("kind mismatch")
}
return strings.Contains(s, ss)
default:
panic(fmt.Sprintf("kind %s is not support", iterableType))
}
return false
}
// Chunk creates an slice of elements split into groups the length of `size`.
func Chunk(slice []interface{}, size int) [][]interface{} {
var res [][]interface{}
if len(slice) == 0 || size <= 0 {
return res
}
length := len(slice)
if size == 1 || size >= length {
for _, v := range slice {
var tmp []interface{}
tmp = append(tmp, v)
res = append(res, tmp)
}
return res
}
// divide slice equally
divideNum := length/size + 1
for i := 0; i < divideNum; i++ {
if i == divideNum-1 {
if len(slice[i*size:]) > 0 {
res = append(res, slice[i*size:])
}
} else {
res = append(res, slice[i*size:(i+1)*size])
}
}
return res
}
// Difference creates an slice of whose element not included in the other given slice
func Difference(slice1, slice2 interface{}) interface{} {
v := sliceValue(slice1)
var indexes []int
for i := 0; i < v.Len(); i++ {
vi := v.Index(i).Interface()
if !Contain(slice2, vi) {
indexes = append(indexes, i)
}
}
res := reflect.MakeSlice(v.Type(), len(indexes), len(indexes))
for i := range indexes {
res.Index(i).Set(v.Index(indexes[i]))
}
return res.Interface()
}
// Every return true if all of the values in the slice pass the predicate function.
// The function signature should be func(index int, value interface{}) bool .
func Every(slice, function interface{}) bool {
sv := sliceValue(slice)
fn := functionValue(function)
elemType := sv.Type().Elem()
if checkSliceCallbackFuncSignature(fn, elemType, reflect.ValueOf(true).Type()) {
panic("function param should be of type func(int, " + elemType.String() + ")" + reflect.ValueOf(true).Type().String())
}
var currentLength int
for i := 0; i < sv.Len(); i++ {
flag := fn.Call([]reflect.Value{reflect.ValueOf(i), sv.Index(i)})[0]
if flag.Bool() {
currentLength++
}
}
return currentLength == sv.Len()
}
// None return true if all the values in the slice mismatch the criteria
// The function signature should be func(index int, value interface{}) bool .
func None(slice, function interface{}) bool {
sv := sliceValue(slice)
fn := functionValue(function)
elemType := sv.Type().Elem()
if checkSliceCallbackFuncSignature(fn, elemType, reflect.ValueOf(true).Type()) {
panic("function param should be of type func(int, " + elemType.String() + ")" + reflect.ValueOf(true).Type().String())
}
var currentLength int
for i := 0; i < sv.Len(); i++ {
flag := fn.Call([]reflect.Value{reflect.ValueOf(i), sv.Index(i)})[0]
if !flag.Bool() {
currentLength++
}
}
return currentLength == sv.Len()
}
// Some return true if any of the values in the list pass the predicate function.
// The function signature should be func(index int, value interface{}) bool .
func Some(slice, function interface{}) bool {
sv := sliceValue(slice)
fn := functionValue(function)
elemType := sv.Type().Elem()
if checkSliceCallbackFuncSignature(fn, elemType, reflect.ValueOf(true).Type()) {
panic("function param should be of type func(int, " + elemType.String() + ")" + reflect.ValueOf(true).Type().String())
}
has := false
for i := 0; i < sv.Len(); i++ {
flag := fn.Call([]reflect.Value{reflect.ValueOf(i), sv.Index(i)})[0]
if flag.Bool() {
has = true
}
}
return has
}
// Filter iterates over elements of slice, returning an slice of all elements `signature` returns truthy for.
// The fn signature should be func(int, T) bool.
func Filter[T any](slice []T, fn func(index int, t T) bool) []T {
res := make([]T, 0, 0)
for i, v := range slice {
if fn(i, v) {
res = append(res, v)
}
}
return res
}
// Count iterates over elements of slice, returns a count of all matched elements
// The function signature should be func(index int, value interface{}) bool .
func Count[T any](slice []T, fn func(index int, t T) bool) int {
if fn == nil {
panic("fn is missing")
}
if len(slice) == 0 {
return 0
}
var count int
for i, v := range slice {
if fn(i, v) {
count++
}
}
return count
}
// GroupBy iterate over elements of the slice, each element will be group by criteria, returns two slices
// The function signature should be func(index int, value interface{}) bool .
func GroupBy(slice, function interface{}) (interface{}, interface{}) {
sv := sliceValue(slice)
fn := functionValue(function)
elemType := sv.Type().Elem()
if checkSliceCallbackFuncSignature(fn, elemType, reflect.ValueOf(true).Type()) {
panic("function param should be of type func(int, " + elemType.String() + ")" + reflect.ValueOf(true).Type().String())
}
groupB := reflect.MakeSlice(sv.Type(), 0, 0)
groupA := reflect.MakeSlice(sv.Type(), 0, 0)
for i := 0; i < sv.Len(); i++ {
flag := fn.Call([]reflect.Value{reflect.ValueOf(i), sv.Index(i)})[0]
if flag.Bool() {
groupA = reflect.Append(groupA, sv.Index(i))
} else {
groupB = reflect.Append(groupB, sv.Index(i))
}
}
return groupA.Interface(), groupB.Interface()
}
// Find iterates over elements of slice, returning the first one that passes a truth test on function.
// The function signature should be func(index int, value interface{}) bool .
// If return T is nil then no items matched the predicate func
func Find[T any](slice []T, fn func(index int, t T) bool) (*T, bool) {
if len(slice) == 0 {
return nil, false
}
index := -1
for i, v := range slice {
if fn(i, v) {
index = i
break
}
}
if index == -1 {
return nil, false
}
return &slice[index], true
}
// FlattenDeep flattens slice recursive
func FlattenDeep(slice interface{}) interface{} {
sv := sliceValue(slice)
st := sliceElemType(sv.Type())
tmp := reflect.MakeSlice(reflect.SliceOf(st), 0, 0)
res := flattenRecursive(sv, tmp)
return res.Interface()
}
func flattenRecursive(value reflect.Value, result reflect.Value) reflect.Value {
for i := 0; i < value.Len(); i++ {
item := value.Index(i)
kind := item.Kind()
if kind == reflect.Slice {
result = flattenRecursive(item, result)
} else {
result = reflect.Append(result, item)
}
}
return result
}
// ForEach iterates over elements of slice and invokes function for each element
// The fn signature should be func(int, T ).
func ForEach[T any](slice []T, fn func(index int, t T)) {
for i, v := range slice {
fn(i, v)
}
}
// Map creates an slice of values by running each element of `slice` thru `function`.
// The fn signature should be func(int, T).
func Map[T any, U any](slice []T, fn func(index int, t T) U) []U {
res := make([]U, len(slice), cap(slice))
for i, v := range slice {
res[i] = fn(i, v)
}
return res
}
// Reduce creates an slice of values by running each element of `slice` thru `function`.
// The function signature should be func(index int, value1, value2 interface{}) interface{} .
func Reduce(slice, function, zero interface{}) interface{} {
sv := sliceValue(slice)
elementType := sv.Type().Elem()
len := sv.Len()
if len == 0 {
return zero
} else if len == 1 {
return sv.Index(0).Interface()
}
fn := functionValue(function)
if checkSliceCallbackFuncSignature(fn, elementType, elementType, elementType) {
t := elementType.String()
panic("function param should be of type func(int, " + t + ", " + t + ")" + t)
}
var params [3]reflect.Value
params[0] = reflect.ValueOf(0)
params[1] = sv.Index(0)
params[2] = sv.Index(1)
res := fn.Call(params[:])[0]
for i := 2; i < len; i++ {
params[0] = reflect.ValueOf(i)
params[1] = res
params[2] = sv.Index(i)
res = fn.Call(params[:])[0]
}
return res.Interface()
}
// InterfaceSlice convert param to slice of interface.
func InterfaceSlice(slice interface{}) []interface{} {
sv := sliceValue(slice)
if sv.IsNil() {
return nil
}
res := make([]interface{}, sv.Len())
for i := 0; i < sv.Len(); i++ {
res[i] = sv.Index(i).Interface()
}
return res
}
// StringSlice convert param to slice of string.
func StringSlice(slice interface{}) []string {
v := sliceValue(slice)
out := make([]string, v.Len())
for i := 0; i < v.Len(); i++ {
v, ok := v.Index(i).Interface().(string)
if !ok {
panic("invalid element type")
}
out[i] = v
}
return out
}
// IntSlice convert param to slice of int.
func IntSlice(slice interface{}) []int {
sv := sliceValue(slice)
out := make([]int, sv.Len())
for i := 0; i < sv.Len(); i++ {
v, ok := sv.Index(i).Interface().(int)
if !ok {
panic("invalid element type")
}
out[i] = v
}
return out
}
// ConvertSlice convert original slice to new data type element of slice.
func ConvertSlice(originalSlice interface{}, newSliceType reflect.Type) interface{} {
sv := sliceValue(originalSlice)
if newSliceType.Kind() != reflect.Slice {
panic(fmt.Sprintf("Invalid newSliceType(non-slice type of type %T)", newSliceType))
}
newSlice := reflect.New(newSliceType)
hdr := (*reflect.SliceHeader)(unsafe.Pointer(newSlice.Pointer()))
var newElemSize = int(sv.Type().Elem().Size()) / int(newSliceType.Elem().Size())
hdr.Cap = sv.Cap() * newElemSize
hdr.Len = sv.Len() * newElemSize
hdr.Data = sv.Pointer()
return newSlice.Elem().Interface()
}
// DeleteByIndex delete the element of slice from start index to end index - 1.
// Delete i: s = append(s[:i], s[i+1:]...)
// Delete i to j: s = append(s[:i], s[j:]...)
func DeleteByIndex(slice interface{}, start int, end ...int) (interface{}, error) {
v := sliceValue(slice)
i := start
if v.Len() == 0 || i < 0 || i > v.Len() {
return nil, errors.New("InvalidStartIndex")
}
if len(end) > 0 {
j := end[0]
if j <= i || j > v.Len() {
return nil, errors.New("InvalidEndIndex")
}
v = reflect.AppendSlice(v.Slice(0, i), v.Slice(j, v.Len()))
} else {
v = reflect.AppendSlice(v.Slice(0, i), v.Slice(i+1, v.Len()))
}
return v.Interface(), nil
}
// Drop creates a slice with `n` elements dropped from the beginning when n > 0, or `n` elements dropped from the ending when n < 0
func Drop(slice interface{}, n int) interface{} {
sv := sliceValue(slice)
if n == 0 {
return slice
}
svLen := sv.Len()
if math.Abs(float64(n)) >= float64(svLen) {
return reflect.MakeSlice(sv.Type(), 0, 0).Interface()
}
if n > 0 {
res := reflect.MakeSlice(sv.Type(), svLen-n, svLen-n)
for i := 0; i < res.Len(); i++ {
res.Index(i).Set(sv.Index(i + n))
}
return res.Interface()
}
res := reflect.MakeSlice(sv.Type(), svLen+n, svLen+n)
for i := 0; i < res.Len(); i++ {
res.Index(i).Set(sv.Index(i))
}
return res.Interface()
}
// InsertByIndex insert the element into slice at index.
// Insert value: s = append(s[:i], append([]T{x}, s[i:]...)...)
// Insert slice: a = append(a[:i], append(b, a[i:]...)...)
func InsertByIndex(slice interface{}, index int, value interface{}) (interface{}, error) {
v := sliceValue(slice)
if index < 0 || index > v.Len() {
return slice, errors.New("InvalidSliceIndex")
}
// value is slice
vv := reflect.ValueOf(value)
if vv.Kind() == reflect.Slice {
if reflect.TypeOf(slice).Elem() != reflect.TypeOf(value).Elem() {
return slice, errors.New("InvalidValueType")
}
v = reflect.AppendSlice(v.Slice(0, index), reflect.AppendSlice(vv.Slice(0, vv.Len()), v.Slice(index, v.Len())))
return v.Interface(), nil
}
// value is not slice
if reflect.TypeOf(slice).Elem() != reflect.TypeOf(value) {
return slice, errors.New("InvalidValueType")
}
if index == v.Len() {
return reflect.Append(v, reflect.ValueOf(value)).Interface(), nil
}
v = reflect.AppendSlice(v.Slice(0, index+1), v.Slice(index, v.Len()))
v.Index(index).Set(reflect.ValueOf(value))
return v.Interface(), nil
}
// UpdateByIndex update the slice element at index.
func UpdateByIndex(slice interface{}, index int, value interface{}) (interface{}, error) {
v := sliceValue(slice)
if index < 0 || index >= v.Len() {
return slice, errors.New("InvalidSliceIndex")
}
if reflect.TypeOf(slice).Elem() != reflect.TypeOf(value) {
return slice, errors.New("InvalidValueType")
}
v.Index(index).Set(reflect.ValueOf(value))
return v.Interface(), nil
}
// Unique remove duplicate elements in slice.
func Unique(slice interface{}) interface{} {
sv := sliceValue(slice)
if sv.Len() == 0 {
return slice
}
var temp []interface{}
for i := 0; i < sv.Len(); i++ {
v := sv.Index(i).Interface()
skip := true
for j := range temp {
if v == temp[j] {
skip = false
break
}
}
if skip {
temp = append(temp, v)
}
}
res := reflect.MakeSlice(sv.Type(), len(temp), len(temp))
for i := 0; i < len(temp); i++ {
res.Index(i).Set(reflect.ValueOf(temp[i]))
}
return res.Interface()
// if use map filter, the result slice element order is random, not same as origin slice
//mp := make(map[interface{}]bool)
//for i := 0; i < sv.Len(); i++ {
// v := sv.Index(i).Interface()
// mp[v] = true
//}
//
//var res []interface{}
//for k := range mp {
// res = append(res, mp[k])
//}
//return res
}
// Union creates a slice of unique values, in order, from all given slices. using == for equality comparisons.
func Union(slices ...interface{}) interface{} {
if len(slices) == 0 {
return nil
}
// append all slices, then unique it
var allSlices []interface{}
len := 0
for i := range slices {
sv := sliceValue(slices[i])
len += sv.Len()
for j := 0; j < sv.Len(); j++ {
v := sv.Index(j).Interface()
allSlices = append(allSlices, v)
}
}
sv := sliceValue(slices[0])
res := reflect.MakeSlice(sv.Type(), len, len)
for i := 0; i < len; i++ {
res.Index(i).Set(reflect.ValueOf(allSlices[i]))
}
return Unique(res.Interface())
}
// Intersection creates a slice of unique values that included by all slices.
func Intersection(slices ...interface{}) interface{} {
if len(slices) == 0 {
return nil
}
reduceFunc := func(index int, slice1, slice2 interface{}) interface{} {
set := make([]interface{}, 0)
hash := make(map[interface{}]bool)
sv1 := reflect.ValueOf(slice1)
for i := 0; i < sv1.Len(); i++ {
v := sv1.Index(i).Interface()
hash[v] = true
}
sv2 := reflect.ValueOf(slice2)
for i := 0; i < sv2.Len(); i++ {
el := sv2.Index(i).Interface()
if _, found := hash[el]; found {
set = append(set, el)
}
}
res := reflect.MakeSlice(sv1.Type(), len(set), len(set))
for i := 0; i < len(set); i++ {
res.Index(i).Set(reflect.ValueOf(set[i]))
}
return res.Interface()
}
res := Reduce(slices, reduceFunc, nil)
return Unique(res)
}
// ReverseSlice return slice of element order is reversed to the given slice
func ReverseSlice(slice interface{}) {
sv := sliceValue(slice)
swp := reflect.Swapper(sv.Interface())
for i, j := 0, sv.Len()-1; i < j; i, j = i+1, j-1 {
swp(i, j)
}
}
// Shuffle creates an slice of shuffled values
func Shuffle(slice interface{}) interface{} {
sv := sliceValue(slice)
length := sv.Len()
res := reflect.MakeSlice(sv.Type(), length, length)
for i, v := range rand.Perm(length) {
res.Index(i).Set(sv.Index(v))
}
return res.Interface()
}
// SortByField return sorted slice by field
// Slice element should be struct, field type should be int, uint, string, or bool
// default sortType is ascending (asc), if descending order, set sortType to desc
func SortByField(slice interface{}, field string, sortType ...string) error {
sv := sliceValue(slice)
t := sv.Type().Elem()
if t.Kind() == reflect.Ptr {
t = t.Elem()
}
if t.Kind() != reflect.Struct {
return fmt.Errorf("data type %T not support, shuld be struct or pointer to struct", slice)
}
// Find the field.
sf, ok := t.FieldByName(field)
if !ok {
return fmt.Errorf("field name %s not found", field)
}
// Create a less function based on the field's kind.
var less func(a, b reflect.Value) bool
switch sf.Type.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
case reflect.Float32, reflect.Float64:
less = func(a, b reflect.Value) bool { return a.Float() < b.Float() }
case reflect.String:
less = func(a, b reflect.Value) bool { return a.String() < b.String() }
case reflect.Bool:
less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() }
default:
return fmt.Errorf("field type %s not supported", sf.Type)
}
sort.Slice(slice, func(i, j int) bool {
a := sv.Index(i)
b := sv.Index(j)
if t.Kind() == reflect.Ptr {
a = a.Elem()
b = b.Elem()
}
a = a.FieldByIndex(sf.Index)
b = b.FieldByIndex(sf.Index)
return less(a, b)
})
if sortType[0] == "desc" {
ReverseSlice(slice)
}
return nil
}
// Without creates a slice excluding all given values
func Without(slice interface{}, values ...interface{}) interface{} {
sv := sliceValue(slice)
if sv.Len() == 0 {
return slice
}
var indexes []int
for i := 0; i < sv.Len(); i++ {
v := sv.Index(i).Interface()
if !Contain(values, v) {
indexes = append(indexes, i)
}
}
res := reflect.MakeSlice(sv.Type(), len(indexes), len(indexes))
for i := range indexes {
res.Index(i).Set(sv.Index(indexes[i]))
}
return res.Interface()
}