Files
opencatd-open/pkg/tokenizer/tokenizer.go
Sakurasan 3b609324b8 fix bug
2024-04-17 19:29:52 +08:00

177 lines
6.1 KiB
Go

package tokenizer
import (
"fmt"
"log"
"strings"
"github.com/pkoukk/tiktoken-go"
"github.com/sashabaranov/go-openai"
)
func NumTokensFromMessages(messages []openai.ChatCompletionMessage, model string) (numTokens int) {
tkm, err := tiktoken.EncodingForModel(model)
if err != nil {
err = fmt.Errorf("EncodingForModel: %v", err)
log.Println(err)
return
}
var tokensPerMessage, tokensPerName int
switch model {
case "gpt-3.5-turbo",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-16k-0613",
"gpt-4",
"gpt-4-0314",
"gpt-4-0613",
"gpt-4-32k",
"gpt-4-32k-0314",
"gpt-4-32k-0613":
tokensPerMessage = 3
tokensPerName = 1
case "gpt-3.5-turbo-0301":
tokensPerMessage = 4 // every message follows <|start|>{role/name}\n{content}<|end|>\n
tokensPerName = -1 // if there's a name, the role is omitted
default:
if strings.Contains(model, "gpt-3.5-turbo") {
log.Println("warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.")
return NumTokensFromMessages(messages, "gpt-3.5-turbo-0613")
} else if strings.Contains(model, "gpt-4") {
log.Println("warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.")
return NumTokensFromMessages(messages, "gpt-4-0613")
} else {
err = fmt.Errorf("warning: unknown model [%s]. Use default calculation method converted tokens.", model)
log.Println(err)
return NumTokensFromMessages(messages, "gpt-3.5-turbo-0613")
}
}
for _, message := range messages {
numTokens += tokensPerMessage
numTokens += len(tkm.Encode(message.Content, nil, nil))
numTokens += len(tkm.Encode(message.Role, nil, nil))
numTokens += len(tkm.Encode(message.Name, nil, nil))
if message.Name != "" {
numTokens += tokensPerName
}
}
numTokens += 3
return numTokens
}
func NumTokensFromStr(messages string, model string) (num_tokens int) {
tkm, err := tiktoken.EncodingForModel(model)
if err != nil {
fmt.Println(err)
fmt.Println("Unsupport Model,use cl100k_base Encode")
tkm, _ = tiktoken.GetEncoding("cl100k_base")
}
num_tokens += len(tkm.Encode(messages, nil, nil))
return num_tokens
}
// https://openai.com/pricing
func Cost(model string, promptCount, completionCount int) float64 {
var cost, prompt, completion float64
prompt = float64(promptCount)
completion = float64(completionCount)
switch model {
case "gpt-3.5-turbo-0301":
cost = 0.002 * float64((prompt+completion)/1000)
case "gpt-3.5-turbo", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-1106", "gpt-3.5-turbo-0125":
cost = 0.0015*float64((prompt)/1000) + 0.002*float64(completion/1000)
case "gpt-3.5-turbo-16k", "gpt-3.5-turbo-16k-0613":
cost = 0.003*float64((prompt)/1000) + 0.004*float64(completion/1000)
case "gpt-4", "gpt-4-0613", "gpt-4-0314":
cost = 0.03*float64(prompt/1000) + 0.06*float64(completion/1000)
case "gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-0613":
cost = 0.06*float64(prompt/1000) + 0.12*float64(completion/1000)
case "gpt-4-1106-preview", "gpt-4-vision-preview", "gpt-4-0125-preview", "gpt-4-turbo-preview":
cost = 0.01*float64(prompt/1000) + 0.03*float64(completion/1000)
case "gpt-4-turbo", "gpt-4-turbo-2024-04-09":
cost = 0.01*float64(prompt/1000) + 0.03*float64(completion/1000)
case "whisper-1":
// 0.006$/min
cost = 0.006 * float64(prompt+completion) / 60
case "tts-1":
cost = 0.015 * float64(prompt+completion)
case "tts-1-hd":
cost = 0.03 * float64(prompt+completion)
case "dall-e-2.256x256":
cost = float64(0.016 * completion)
case "dall-e-2.512x512":
cost = float64(0.018 * completion)
case "dall-e-2.1024x1024":
cost = float64(0.02 * completion)
case "dall-e-3.256x256":
cost = float64(0.04 * completion)
case "dall-e-3.512x512":
cost = float64(0.04 * completion)
case "dall-e-3.1024x1024":
cost = float64(0.04 * completion)
case "dall-e-3.1024x1792", "dall-e-3.1792x1024":
cost = float64(0.08 * completion)
case "dall-e-3.256x256.hd":
cost = float64(0.08 * completion)
case "dall-e-3.512x512.hd":
cost = float64(0.08 * completion)
case "dall-e-3.1024x1024.hd":
cost = float64(0.08 * completion)
case "dall-e-3.1024x1792.hd", "dall-e-3.1792x1024.hd":
cost = float64(0.12 * completion)
// claude /million tokens
// https://aws.amazon.com/cn/bedrock/pricing/
case "claude-v1", "claude-v1-100k":
cost = 11.02/1000000*float64(prompt) + (32.68/1000000)*float64(completion)
case "claude-instant-v1", "claude-instant-v1-100k":
cost = (1.63/1000000)*float64(prompt) + (5.51/1000000)*float64(completion)
case "claude-2", "claude-2.1":
cost = (8.0/1000000)*float64(prompt) + (24.0/1000000)*float64(completion)
case "claude-3-haiku":
cost = (0.00025/1000)*float64(prompt) + (0.00125/1000)*float64(completion)
case "claude-3-sonnet":
cost = (0.003/1000)*float64(prompt) + (0.015/1000)*float64(completion)
case "claude-3-opus":
cost = (0.015/1000)*float64(prompt) + (0.075/1000)*float64(completion)
case "claude-3-haiku-20240307":
cost = (0.00025/1000)*float64(prompt) + (0.00125/1000)*float64(completion)
case "claude-3-sonnet-20240229":
cost = (0.003/1000)*float64(prompt) + (0.015/1000)*float64(completion)
case "claude-3-opus-20240229":
cost = (0.015/1000)*float64(prompt) + (0.075/1000)*float64(completion)
// google
// https://ai.google.dev/pricing?hl=zh-cn
case "gemini-pro":
cost = (0.000125/1000)*float64(prompt) + (0.000375/1000)*float64(completion)
case "gemini-pro-vision":
cost = (0.000125/1000)*float64(prompt) + (0.000375/1000)*float64(completion)
case "gemini-1.5-pro-latest":
cost = (0.00025/1000)*float64(prompt) + (0.0005/1000)*float64(completion)
// Mistral AI
case "mistral-small-latest":
cost = (0.002/1000)*float64(prompt) + (0.006/1000)*float64(completion)
case "mistral-medium-latest":
cost = (0.0027/1000)*float64(prompt) + (0.0081/1000)*float64(completion)
case "mistral-large-latest":
cost = (0.008/1000)*float64(prompt) + (0.024/1000)*float64(completion)
default:
if strings.Contains(model, "gpt-3.5-turbo") {
cost = 0.003 * float64((prompt+completion)/1000)
} else if strings.Contains(model, "gpt-4") {
cost = 0.06 * float64((prompt+completion)/1000)
} else {
cost = 0.002 * float64((prompt+completion)/1000)
}
}
return cost
}