// Copyright 2021 dudaodong@gmail.com. All rights reserved. // Use of this source code is governed by MIT license // Package slice implements some functions to manipulate slice. package slice import ( "errors" "fmt" "math" "math/rand" "reflect" "sort" "unsafe" ) // Contain check if the value is in the iterable type or not func Contain[T comparable](slice []T, value T) bool { for _, v := range slice { if v == value { return true } } return false } // Chunk creates an slice of elements split into groups the length of size. func Chunk[T any](slice []T, size int) [][]T { var res [][]T if len(slice) == 0 || size <= 0 { return res } length := len(slice) if size == 1 || size >= length { for _, v := range slice { var tmp []T tmp = append(tmp, v) res = append(res, tmp) } return res } // divide slice equally divideNum := length/size + 1 for i := 0; i < divideNum; i++ { if i == divideNum-1 { if len(slice[i*size:]) > 0 { res = append(res, slice[i*size:]) } } else { res = append(res, slice[i*size:(i+1)*size]) } } return res } // Difference creates an slice of whose element in slice1 but not in slice2 func Difference[T comparable](slice1, slice2 []T) []T { var res []T for _, v := range slice1 { if !Contain(slice2, v) { res = append(res, v) } } return res } // Every return true if all of the values in the slice pass the predicate function. // The fn function signature should be func(int, T) bool . func Every[T any](slice []T, fn func(index int, t T) bool) bool { var currentLength int for i, v := range slice { if fn(i, v) { currentLength++ } } return currentLength == len(slice) } // None return true if all the values in the slice mismatch the criteria // The fn function signature should be func(int, T) bool . func None[T any](slice []T, fn func(index int, t T) bool) bool { var currentLength int for i, v := range slice { if !fn(i, v) { currentLength++ } } return currentLength == len(slice) } // Some return true if any of the values in the list pass the predicate function. // The fn function signature should be func(int, T) bool. func Some[T any](slice []T, fn func(index int, t T) bool) bool { for i, v := range slice { if fn(i, v) { return true } } return false } // Filter iterates over elements of slice, returning an slice of all elements `signature` returns truthy for. // The fn function signature should be func(int, T) bool. func Filter[T any](slice []T, fn func(index int, t T) bool) []T { res := make([]T, 0, 0) for i, v := range slice { if fn(i, v) { res = append(res, v) } } return res } // Count iterates over elements of slice, returns a count of all matched elements // The function signature should be func(index int, value interface{}) bool . func Count(slice, function interface{}) int { sv := sliceValue(slice) fn := functionValue(function) elemType := sv.Type().Elem() if checkSliceCallbackFuncSignature(fn, elemType, reflect.ValueOf(true).Type()) { panic("function param should be of type func(int, " + elemType.String() + ")" + reflect.ValueOf(true).Type().String()) } var counter int for i := 0; i < sv.Len(); i++ { flag := fn.Call([]reflect.Value{reflect.ValueOf(i), sv.Index(i)})[0] if flag.Bool() { counter++ } } return counter } // GroupBy iterate over elements of the slice, each element will be group by criteria, returns two slices // The function signature should be func(index int, value interface{}) bool . func GroupBy(slice, function interface{}) (interface{}, interface{}) { sv := sliceValue(slice) fn := functionValue(function) elemType := sv.Type().Elem() if checkSliceCallbackFuncSignature(fn, elemType, reflect.ValueOf(true).Type()) { panic("function param should be of type func(int, " + elemType.String() + ")" + reflect.ValueOf(true).Type().String()) } groupB := reflect.MakeSlice(sv.Type(), 0, 0) groupA := reflect.MakeSlice(sv.Type(), 0, 0) for i := 0; i < sv.Len(); i++ { flag := fn.Call([]reflect.Value{reflect.ValueOf(i), sv.Index(i)})[0] if flag.Bool() { groupA = reflect.Append(groupA, sv.Index(i)) } else { groupB = reflect.Append(groupB, sv.Index(i)) } } return groupA.Interface(), groupB.Interface() } // Find iterates over elements of slice, returning the first one that passes a truth test on function. // The fn function signature should be func(int, T) bool . // If return T is nil then no items matched the predicate func func Find[T any](slice []T, fn func(index int, t T) bool) (*T, bool) { if len(slice) == 0 { return nil, false } index := -1 for i, v := range slice { if fn(i, v) { index = i break } } if index == -1 { return nil, false } return &slice[index], true } // FlattenDeep flattens slice recursive func FlattenDeep(slice interface{}) interface{} { sv := sliceValue(slice) st := sliceElemType(sv.Type()) tmp := reflect.MakeSlice(reflect.SliceOf(st), 0, 0) res := flattenRecursive(sv, tmp) return res.Interface() } func flattenRecursive(value reflect.Value, result reflect.Value) reflect.Value { for i := 0; i < value.Len(); i++ { item := value.Index(i) kind := item.Kind() if kind == reflect.Slice { result = flattenRecursive(item, result) } else { result = reflect.Append(result, item) } } return result } // ForEach iterates over elements of slice and invokes function for each element // The fn signature should be func(int, T). func ForEach[T any](slice []T, fn func(index int, t T)) { for i, v := range slice { fn(i, v) } } // Map creates an slice of values by running each element of slice thru fn function. // The fn signature should be func(int, T). func Map[T any, U any](slice []T, fn func(index int, t T) U) []U { res := make([]U, len(slice), cap(slice)) for i, v := range slice { res[i] = fn(i, v) } return res } // Reduce creates an slice of values by running each element of slice thru fn function. // The fn function signature should be fn func(int, T) T . func Reduce[T any](slice []T, fn func(index int, t1, t2 T) T, initial T) T { if len(slice) == 0 { return initial } res := fn(0, initial, slice[0]) tmp := make([]T, 2, 2) for i := 1; i < len(slice); i++ { tmp[0] = res tmp[1] = slice[i] res = fn(i, tmp[0], tmp[1]) } return res } // InterfaceSlice convert param to slice of interface. func InterfaceSlice(slice interface{}) []interface{} { sv := sliceValue(slice) if sv.IsNil() { return nil } res := make([]interface{}, sv.Len()) for i := 0; i < sv.Len(); i++ { res[i] = sv.Index(i).Interface() } return res } // StringSlice convert param to slice of string. func StringSlice(slice interface{}) []string { v := sliceValue(slice) out := make([]string, v.Len()) for i := 0; i < v.Len(); i++ { v, ok := v.Index(i).Interface().(string) if !ok { panic("invalid element type") } out[i] = v } return out } // IntSlice convert param to slice of int. func IntSlice(slice interface{}) []int { sv := sliceValue(slice) out := make([]int, sv.Len()) for i := 0; i < sv.Len(); i++ { v, ok := sv.Index(i).Interface().(int) if !ok { panic("invalid element type") } out[i] = v } return out } // ConvertSlice convert original slice to new data type element of slice. func ConvertSlice(originalSlice interface{}, newSliceType reflect.Type) interface{} { sv := sliceValue(originalSlice) if newSliceType.Kind() != reflect.Slice { panic(fmt.Sprintf("Invalid newSliceType(non-slice type of type %T)", newSliceType)) } newSlice := reflect.New(newSliceType) hdr := (*reflect.SliceHeader)(unsafe.Pointer(newSlice.Pointer())) var newElemSize = int(sv.Type().Elem().Size()) / int(newSliceType.Elem().Size()) hdr.Cap = sv.Cap() * newElemSize hdr.Len = sv.Len() * newElemSize hdr.Data = sv.Pointer() return newSlice.Elem().Interface() } // DeleteByIndex delete the element of slice from start index to end index - 1. // Delete i: s = append(s[:i], s[i+1:]...) // Delete i to j: s = append(s[:i], s[j:]...) func DeleteByIndex(slice interface{}, start int, end ...int) (interface{}, error) { v := sliceValue(slice) i := start if v.Len() == 0 || i < 0 || i > v.Len() { return nil, errors.New("InvalidStartIndex") } if len(end) > 0 { j := end[0] if j <= i || j > v.Len() { return nil, errors.New("InvalidEndIndex") } v = reflect.AppendSlice(v.Slice(0, i), v.Slice(j, v.Len())) } else { v = reflect.AppendSlice(v.Slice(0, i), v.Slice(i+1, v.Len())) } return v.Interface(), nil } // Drop creates a slice with `n` elements dropped from the beginning when n > 0, or `n` elements dropped from the ending when n < 0 func Drop(slice interface{}, n int) interface{} { sv := sliceValue(slice) if n == 0 { return slice } svLen := sv.Len() if math.Abs(float64(n)) >= float64(svLen) { return reflect.MakeSlice(sv.Type(), 0, 0).Interface() } if n > 0 { res := reflect.MakeSlice(sv.Type(), svLen-n, svLen-n) for i := 0; i < res.Len(); i++ { res.Index(i).Set(sv.Index(i + n)) } return res.Interface() } res := reflect.MakeSlice(sv.Type(), svLen+n, svLen+n) for i := 0; i < res.Len(); i++ { res.Index(i).Set(sv.Index(i)) } return res.Interface() } // InsertByIndex insert the element into slice at index. // Insert value: s = append(s[:i], append([]T{x}, s[i:]...)...) // Insert slice: a = append(a[:i], append(b, a[i:]...)...) func InsertByIndex(slice interface{}, index int, value interface{}) (interface{}, error) { v := sliceValue(slice) if index < 0 || index > v.Len() { return slice, errors.New("InvalidSliceIndex") } // value is slice vv := reflect.ValueOf(value) if vv.Kind() == reflect.Slice { if reflect.TypeOf(slice).Elem() != reflect.TypeOf(value).Elem() { return slice, errors.New("InvalidValueType") } v = reflect.AppendSlice(v.Slice(0, index), reflect.AppendSlice(vv.Slice(0, vv.Len()), v.Slice(index, v.Len()))) return v.Interface(), nil } // value is not slice if reflect.TypeOf(slice).Elem() != reflect.TypeOf(value) { return slice, errors.New("InvalidValueType") } if index == v.Len() { return reflect.Append(v, reflect.ValueOf(value)).Interface(), nil } v = reflect.AppendSlice(v.Slice(0, index+1), v.Slice(index, v.Len())) v.Index(index).Set(reflect.ValueOf(value)) return v.Interface(), nil } // UpdateByIndex update the slice element at index. func UpdateByIndex(slice interface{}, index int, value interface{}) (interface{}, error) { v := sliceValue(slice) if index < 0 || index >= v.Len() { return slice, errors.New("InvalidSliceIndex") } if reflect.TypeOf(slice).Elem() != reflect.TypeOf(value) { return slice, errors.New("InvalidValueType") } v.Index(index).Set(reflect.ValueOf(value)) return v.Interface(), nil } // Unique remove duplicate elements in slice. func Unique[T comparable](slice []T) []T { if len(slice) == 0 { return []T{} } // here no use map filter. if use it, the result slice element order is random, not same as origin slice var res []T for i := 0; i < len(slice); i++ { v := slice[i] skip := true for j := range res { if v == res[j] { skip = false break } } if skip { res = append(res, v) } } return res } // Union creates a slice of unique values, in order, from all given slices. using == for equality comparisons. func Union[T comparable](slices ...[]T) []T { if len(slices) == 0 { return []T{} } // append all slices, then unique it var allElements []T for _, slice := range slices { for _, v := range slice { allElements = append(allElements, v) } } return Unique(allElements) } // Intersection creates a slice of unique values that included by all slices. func Intersection[T comparable](slices ...[]T) []T { var res []T if len(slices) == 0 { return []T{} } if len(slices) == 1 { return Unique(slices[0]) } //return elements both in slice1 and slice2 reduceFunc := func(slice1, slice2 []T) []T { s := make([]T, 0, 0) for _, v := range slice1 { if Contain(slice2, v) { s = append(s, v) } } return s } res = reduceFunc(slices[0], slices[1]) if len(slices) == 2 { return Unique(res) } tmp := make([][]T, 2, 2) for i := 2; i < len(slices); i++ { tmp[0] = res tmp[1] = slices[i] res = reduceFunc(tmp[0], tmp[1]) } return Unique(res) } // ReverseSlice return slice of element order is reversed to the given slice func ReverseSlice(slice interface{}) { sv := sliceValue(slice) swp := reflect.Swapper(sv.Interface()) for i, j := 0, sv.Len()-1; i < j; i, j = i+1, j-1 { swp(i, j) } } // Shuffle creates an slice of shuffled values func Shuffle(slice interface{}) interface{} { sv := sliceValue(slice) length := sv.Len() res := reflect.MakeSlice(sv.Type(), length, length) for i, v := range rand.Perm(length) { res.Index(i).Set(sv.Index(v)) } return res.Interface() } // SortByField return sorted slice by field // Slice element should be struct, field type should be int, uint, string, or bool // default sortType is ascending (asc), if descending order, set sortType to desc func SortByField(slice interface{}, field string, sortType ...string) error { sv := sliceValue(slice) t := sv.Type().Elem() if t.Kind() == reflect.Ptr { t = t.Elem() } if t.Kind() != reflect.Struct { return fmt.Errorf("data type %T not support, shuld be struct or pointer to struct", slice) } // Find the field. sf, ok := t.FieldByName(field) if !ok { return fmt.Errorf("field name %s not found", field) } // Create a less function based on the field's kind. var less func(a, b reflect.Value) bool switch sf.Type.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: less = func(a, b reflect.Value) bool { return a.Int() < b.Int() } case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() } case reflect.Float32, reflect.Float64: less = func(a, b reflect.Value) bool { return a.Float() < b.Float() } case reflect.String: less = func(a, b reflect.Value) bool { return a.String() < b.String() } case reflect.Bool: less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() } default: return fmt.Errorf("field type %s not supported", sf.Type) } sort.Slice(slice, func(i, j int) bool { a := sv.Index(i) b := sv.Index(j) if t.Kind() == reflect.Ptr { a = a.Elem() b = b.Elem() } a = a.FieldByIndex(sf.Index) b = b.FieldByIndex(sf.Index) return less(a, b) }) if sortType[0] == "desc" { ReverseSlice(slice) } return nil } // Without creates a slice excluding all given values func Without(slice interface{}, values ...interface{}) interface{} { sv := sliceValue(slice) if sv.Len() == 0 { return slice } var indexes []int for i := 0; i < sv.Len(); i++ { v := sv.Index(i).Interface() if !Contain(values, v) { indexes = append(indexes, i) } } res := reflect.MakeSlice(sv.Type(), len(indexes), len(indexes)) for i := range indexes { res.Index(i).Set(sv.Index(indexes[i])) } return res.Interface() }