package cryptor import ( "crypto/cipher" "crypto/rand" "encoding/binary" "io" ) // SM4 implements the Chinese SM4 block cipher. // SM4 is a 128-bit block cipher with 128-bit keys. // This implementation uses pre-computed lookup tables for optimal performance. const sm4BlockSize = 16 // Pre-computed T-transformation lookup tables for performance optimization var sm4T1Table [256][4]uint32 // S-box + L1 transformation var sm4T2Table [256][4]uint32 // S-box + L2 transformation var sm4Sbox = [256]byte{ 0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7, 0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05, 0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3, 0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62, 0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95, 0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6, 0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba, 0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8, 0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b, 0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35, 0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87, 0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52, 0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e, 0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5, 0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1, 0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55, 0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3, 0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60, 0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f, 0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f, 0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51, 0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f, 0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8, 0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd, 0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0, 0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e, 0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84, 0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20, 0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48, } var sm4FK = [4]uint32{0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc} var sm4CK = [32]uint32{ 0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269, 0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9, 0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249, 0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9, 0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229, 0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299, 0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209, 0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279, } // 初始化预计算查找表 func init() { // Pre-compute all possible T1 and T2 transformations for pos := 0; pos < 4; pos++ { for i := 0; i < 256; i++ { // S-box 替换 sboxVal := sm4Sbox[i] // 根据字节位置计算偏移 shift := uint32((3 - pos) * 8) b := uint32(sboxVal) << shift // L1 变换:b ^ ROL(b,2) ^ ROL(b,10) ^ ROL(b,18) ^ ROL(b,24) sm4T1Table[i][pos] = b ^ sm4RotateLeft(b, 2) ^ sm4RotateLeft(b, 10) ^ sm4RotateLeft(b, 18) ^ sm4RotateLeft(b, 24) // L2 变换:b ^ ROL(b,13) ^ ROL(b,23) sm4T2Table[i][pos] = b ^ sm4RotateLeft(b, 13) ^ sm4RotateLeft(b, 23) } } } type sm4Cipher struct { enc [32]uint32 dec [32]uint32 } // Sm4EcbEncrypt encrypts data using SM4 in ECB mode. // key must be 16 bytes. // Play: https://go.dev/play/p/l5IQxYuuaED func Sm4EcbEncrypt(data, key []byte) []byte { if len(key) != 16 { panic("sm4: key length must be 16 bytes") } c := newSm4Cipher(key) padded := pkcs7Padding(data, sm4BlockSize) encrypted := make([]byte, len(padded)) for i := 0; i < len(padded); i += sm4BlockSize { c.Encrypt(encrypted[i:i+sm4BlockSize], padded[i:i+sm4BlockSize]) } return encrypted } // Sm4EcbDecrypt decrypts data using SM4 in ECB mode. // key must be 16 bytes. // Play: https://go.dev/play/p/l5IQxYuuaED func Sm4EcbDecrypt(encrypted, key []byte) []byte { if len(key) != 16 { panic("sm4: key length must be 16 bytes") } if len(encrypted)%sm4BlockSize != 0 { panic("sm4: encrypted data length must be multiple of block size") } c := newSm4Cipher(key) decrypted := make([]byte, len(encrypted)) for i := 0; i < len(encrypted); i += sm4BlockSize { c.Decrypt(decrypted[i:i+sm4BlockSize], encrypted[i:i+sm4BlockSize]) } return pkcs7UnPadding(decrypted) } // Sm4CbcEncrypt encrypts data using SM4 in CBC mode. // key must be 16 bytes. // Play: https://go.dev/play/p/65Q6iYhLRTa func Sm4CbcEncrypt(data, key []byte) []byte { if len(key) != 16 { panic("sm4: key length must be 16 bytes") } c := newSm4Cipher(key) padded := pkcs7Padding(data, sm4BlockSize) iv := make([]byte, sm4BlockSize) if _, err := io.ReadFull(rand.Reader, iv); err != nil { panic("sm4: failed to generate IV: " + err.Error()) } encrypted := make([]byte, len(padded)) mode := cipher.NewCBCEncrypter(c, iv) mode.CryptBlocks(encrypted, padded) return append(iv, encrypted...) } // Sm4CbcDecrypt decrypts data using SM4 in CBC mode. // key must be 16 bytes. // Play: https://go.dev/play/p/65Q6iYhLRTa func Sm4CbcDecrypt(encrypted, key []byte) []byte { if len(key) != 16 { panic("sm4: key length must be 16 bytes") } if len(encrypted) < sm4BlockSize { panic("sm4: encrypted data too short") } if len(encrypted)%sm4BlockSize != 0 { panic("sm4: encrypted data length must be multiple of block size") } c := newSm4Cipher(key) iv := encrypted[:sm4BlockSize] ciphertext := encrypted[sm4BlockSize:] decrypted := make([]byte, len(ciphertext)) mode := cipher.NewCBCDecrypter(c, iv) mode.CryptBlocks(decrypted, ciphertext) return pkcs7UnPadding(decrypted) } func newSm4Cipher(key []byte) *sm4Cipher { c := &sm4Cipher{} var mk [4]uint32 for i := 0; i < 4; i++ { mk[i] = binary.BigEndian.Uint32(key[i*4 : (i+1)*4]) } var k [36]uint32 k[0] = mk[0] ^ sm4FK[0] k[1] = mk[1] ^ sm4FK[1] k[2] = mk[2] ^ sm4FK[2] k[3] = mk[3] ^ sm4FK[3] for i := 0; i < 32; i++ { k[i+4] = k[i] ^ sm4T2Fast(k[i+1]^k[i+2]^k[i+3]^sm4CK[i]) c.enc[i] = k[i+4] } for i := 0; i < 32; i++ { c.dec[i] = c.enc[31-i] } return c } func (c *sm4Cipher) BlockSize() int { return sm4BlockSize } func (c *sm4Cipher) Encrypt(dst, src []byte) { if len(src) < sm4BlockSize { panic("sm4: input not full block") } if len(dst) < sm4BlockSize { panic("sm4: output not full block") } // 使用局部变量避免数组分配,提升性能 x0 := binary.BigEndian.Uint32(src[0:4]) x1 := binary.BigEndian.Uint32(src[4:8]) x2 := binary.BigEndian.Uint32(src[8:12]) x3 := binary.BigEndian.Uint32(src[12:16]) // 32 轮加密 for i := 0; i < 32; i++ { t := x1 ^ x2 ^ x3 ^ c.enc[i] x0 ^= sm4T1Fast(t) x0, x1, x2, x3 = x1, x2, x3, x0 } binary.BigEndian.PutUint32(dst[0:4], x3) binary.BigEndian.PutUint32(dst[4:8], x2) binary.BigEndian.PutUint32(dst[8:12], x1) binary.BigEndian.PutUint32(dst[12:16], x0) } func (c *sm4Cipher) Decrypt(dst, src []byte) { if len(src) < sm4BlockSize { panic("sm4: input not full block") } if len(dst) < sm4BlockSize { panic("sm4: output not full block") } x0 := binary.BigEndian.Uint32(src[0:4]) x1 := binary.BigEndian.Uint32(src[4:8]) x2 := binary.BigEndian.Uint32(src[8:12]) x3 := binary.BigEndian.Uint32(src[12:16]) // 32 轮解密 for i := 0; i < 32; i++ { t := x1 ^ x2 ^ x3 ^ c.dec[i] x0 ^= sm4T1Fast(t) x0, x1, x2, x3 = x1, x2, x3, x0 } binary.BigEndian.PutUint32(dst[0:4], x3) binary.BigEndian.PutUint32(dst[4:8], x2) binary.BigEndian.PutUint32(dst[8:12], x1) binary.BigEndian.PutUint32(dst[12:16], x0) } // 使用预计算查找表的快速 T1 变换(用于加密轮函数) func sm4T1Fast(a uint32) uint32 { return sm4T1Table[byte(a>>24)][0] ^ sm4T1Table[byte(a>>16)][1] ^ sm4T1Table[byte(a>>8)][2] ^ sm4T1Table[byte(a)][3] } // 使用预计算查找表的快速 T2 变换(用于密钥扩展) func sm4T2Fast(a uint32) uint32 { return sm4T2Table[byte(a>>24)][0] ^ sm4T2Table[byte(a>>16)][1] ^ sm4T2Table[byte(a>>8)][2] ^ sm4T2Table[byte(a)][3] } func sm4RotateLeft(x uint32, n uint32) uint32 { return (x << n) | (x >> (32 - n)) }